翻訳と辞書
Words near each other
・ Isoplenodia vidalensis
・ Isoplexis
・ Isopoda
・ Isopodichnus
・ Isopogon
・ Isopogon adenanthoides
・ Isopogon alcicornis
・ Isopogon anemonifolius
・ Isopogon anethifolius
・ Isopogon asper
・ Isopogon attenuatus
・ Isopogon axillaris
・ Isomorphism (sociology)
・ Isomorphism class
・ Isomorphism extension theorem
Isomorphism of categories
・ Isomorphism problem
・ Isomorphism theorem
・ Isomorphism-closed subcategory
・ Isomultiflorenol synthase
・ Isomäki
・ Ison
・ Ison (music)
・ ISON Airbike
・ Ison and Fille
・ Isona i Conca Dellà
・ Isona Passola
・ Isonade
・ Isonandra
・ Isonandra borneensis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Isomorphism of categories : ウィキペディア英語版
Isomorphism of categories

In category theory, two categories ''C'' and ''D'' are isomorphic if there exist functors ''F'' : ''C'' → ''D'' and ''G'' : ''D'' → ''C'' which are mutually inverse to each other, i.e. ''FG'' = 1''D'' (the identity functor on ''D'') and ''GF'' = 1''C''. This means that both the objects and the morphisms of ''C'' and ''D'' stand in a one to one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms.
Isomorphism of categories is a very strong condition and rarely satisfied in practice. Much more important is the notion of equivalence of categories; roughly speaking, for an equivalence of categories we don't require that FG be ''equal'' to 1_D, but only ''naturally isomorphic'' to 1_D, and likewise that GF be naturally isomorphic to 1_C.
==Properties==
As is true for any notion of isomorphism, we have the following general properties formally similar to an equivalence relation:
* any category ''C'' is isomorphic to itself
* if ''C'' is isomorphic to ''D'', then ''D'' is isomorphic to ''C''
* if ''C'' is isomorphic to ''D'' and ''D'' is isomorphic to ''E'', then ''C'' is isomorphic to ''E''.
A functor ''F'' : ''C'' → ''D'' yields an isomorphism of categories if and only if it is bijective on objects and on morphism sets. This criterion can be convenient as it avoids the need to construct the inverse functor ''G''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Isomorphism of categories」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.